
Einstein Roadmap

Einstein Roadmap
a presentation by
Paul Guyot (pguyot@kallisys.net)
WWNC 2007 - 2007/7/8

Part I: Prologue

Basuke

Simon Bell

Martin Buis

Andy Diller

Frank Gründel

Lars Immisch

Eckhart Köppen

Sean Luke

Matthias Melcher

Makoto Nukui

Sylvain Pilet

Victor Rehorst

Walter Smith

Adam Tow

Michael Vacík

David Watson

Larry Yaeger

Nicolas Zinovieff

You, and many others…
3

Many thanks to:

Einstein is NewtonOS 2.1
running on new hardware

4

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)
- Zaurus (2006/1)

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)
- Zaurus (2006/1)
- Nokia 770 (2006/1)

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)
- Zaurus (2006/1)
- Nokia 770 (2006/1)
- MacIntel (2006/5)

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)
- Zaurus (2006/1)
- Nokia 770 (2006/1)
- MacIntel (2006/5)
- Linux x86 (2006/5)

Einstein is NewtonOS 2.1
running on new hardware

4

- Mac (2004/9)
- Zaurus (2006/1)
- Nokia 770 (2006/1)
- MacIntel (2006/5)
- Linux x86 (2006/5)
- Nokia 800 (2007/7)

Einstein is NewtonOS 2.1
running on new hardware

- Windows (2007/7)

5

Einstein is NewtonOS 2.1
running on new hardware

- Windows (2007/7)
- iPhone (?)

5

✓Get an emulator for NewtonOS
development (2005)

✓Extend NewtonOS with modern
technologies (2006)

 -Replace Newton MessagePads
with modern PDAs

6

Three goals in 2004

Part II: Inside Einstein

How Einstein was born

Voyager

ARM
Processor

Analog
Controller

Internal
Flash

RAM
PCMCIA

Controllers

Serial
Ports

Serial
Number

ROM

ROM

Screen

MMUNewton 2.1
hardware
is based on
the
Voyager
Chipset

9

10

10

ARM CPU

Voyager Chipset

Voyager

ARM
Processor

Analog
Controller

Internal
Flash

RAM
PCMCIA

Controllers

Serial
Ports

Serial
Number

ROM

ROM

Screen

MMU

? ?

?

?

We do not
know how
the
Voyager
Chipset
works

11

The ARM Processor in
NewtonOS 2.1
mostly accesses the Voyager
Chipset through drivers
called “PClasses”

It accesses it directly for the
timer (interruptions)

12

ROM

Einstein
provides its
own drivers
inside the
Einstein REX

(ROM
Extension)

13

The Speed Challenge

In 1997, Newtons were
very fast:
StrongARM 110 at 161.9MHz.

15

In 1997, Newtons were
very fast:
StrongARM 110 at 161.9MHz.

15

1997: Pentium II (233-266MHz)
1997: PowerPC G3 (366MHz)

In 1997, Newtons were
very fast:
StrongARM 110 at 161.9MHz.

15

1997: Pentium II (233-266MHz)
1997: PowerPC G3 (366MHz)

2007: MacPro: 3 GHz
2007: iPhone: 620 Mhz (ARM!)

The principle of emulation
(the slow way, Einstein 2004)

1. Update the Program Counter (PC)

2. Get the physical address of the instruction

3. Read the instruction

4. Analyze it

5. Do what it should do

6. Determine if there is any interruption

7. Repeat

16

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

17

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=0001868C

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

18

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=00018690

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

19

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=00018694

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

20

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=00018698

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

21

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=0001869C

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

22

BootOS:
00018688 mov r0, #0xB0
0001868C orr r0, r0, #0x00001000
00018690 mcr 15, 0, r0, cr1, cr1, {0}
00018694 mrc 15, 0, r0, cr0, cr0, {0}
00018698 bic r0, r0, #0xF
0001869C eor r0, r0, #0x44000000
000186A0 eor r0, r0, #0x00010000
000186A4 eors r0, r0, #0x0000A100

PC=000186A0

The Program Counter

The program counter is the (virtual) address
of the current instruction (+4). It is where the
software is currently executing.

Updating the PC is expensive.
Einstein 2007 only updates it when necessary.

23

Translating addresses: MMU

Modern computers have virtual and physical
addresses
virtual: what the software sees
physical: what the hardware sees

NewtonOS makes a heavy use of MMU for
packages, virtual memory, memory
protection.

Einstein uses a cache for MMU since 2005
24

Analyzing instructions

Analyzing instructions takes a lot of time. This
can be done by translating at runtime into
references to native code (Just In Time, JIT).

Einstein uses threaded emulation since 2005

Einstein 2007 includes a new module to
directly translate ARM code into ARM code
(work in progress: only few instructions for
now)

25

Interruptions

Interruptions are hardware signals sent to the
processor to interrupt what it was doing and
do something else instead.

Examples:
 the alarm fires off -> show a dialog
 you press on the screen -> do something
 preemptive multithreading

Emulating interruptions is very expensive.
26

Interruptions

In the future, we can replace interruptions
with virtualizations:

When you press the screen on a Zaurus, the
Zaurus is interrupted.

— Fast interruptions (FIQ) can be virtualized
as they do not influence the main process.
— Regular interruptions (IRQ) are used for
preemptive multithreading. (難しい)

27

Relativity

Relativity was introduced here:

29

Relativity is the integration of
host and Newton data and
technologies

30

Einstein

Newton Package

Host Technology

Relativity

Newton Data

Host Program

Examples:

— Control host applications (iTunes)
— Use other languages within Einstein
(Python, Ruby, …)
— Use Zaurus kanji handwriting recognition
within Einstein
— Use Newton handwriting recognition in
host operating system
— Share Einstein and Host address books

Relativity is only limited by your imagination.
31

Part III: Epilogue

Today, Einstein becomes…

OpenEinstein

OpenEinstein
http://code.google.com/p/einstein/

OpenEinstein

It will always belong to the community

GNU General Public License v2

Sharing the effort:

— Access to more hardware (Nokia 800, iPhone?,
recent Zaurus, Windows Mobile)

— Ported on Windows yesterday with Matthias!

— Work can be distributed on different modules

35

Together we can…

Work on speed…

— Make it much faster on the Zaurus/Nokia/
iPhone with direct translation of ARM
instructions

— Virtualize fast interruptions, regular
interruptions, memory accesses,
NewtonScript bytecode interpreter (NEWT/0),
and more…

37

Work on host integration…

— Emulating serial ports

— Sharing host internet access

— Integrating soups (data exchange)

— Emulating ATA cards to provide storage

— Providing color (cf the VGA card)

— Integrating NewtonOS windows and host
windows (NewtView)

38

…and imagine the next

39

Einstein

…and imagine the next

39

OpenEinstein

Thank you for your attention!

